R/confIntProp.R
confIntProp.Rd
This function simply computes confidence intervals for proportions.
confIntProp(x, n, conf.level = 0.95, plot = FALSE)
The number of 'successes', i.e. the number of events, observations, or cases that one is interested in.
The total number of cases or observatons.
The confidence level.
Whether to plot the confidence interval in the binomial distribution.
The confidence interval bounds in a twodimensional matrix, with the first column containing the lower bound and the second column containing the upper bound.
This function is the adapted source code of binom.test()
. Ir
uses pbeta()
, with some lines of code taken from the
binom.test()
source. Specifically, the count for the low
category is specified as first 'shape argument' to pbeta()
, and
the total count (either the sum of the count for the low category and the
count for the high category, or the total number of cases if
compareHiToLo
is FALSE
) minus the count for the low category
as the second 'shape argument'.
binom.test()
and ggProportionPlot, the
function for which this was written.
### Simple case
confIntProp(84, 200);
#> ci.lo ci.hi
#> 0.42, 95% 0.3507439 0.4916638
### Using vectors
confIntProp(c(2,3), c(10, 20), conf.level=c(.90, .95, .99));
#> ci.lo ci.hi
#> 0.2, 90% 0.036771438 0.5069013
#> 0.1, 90% 0.018065203 0.2826185
#> 0.3, 90% 0.087264434 0.6066242
#> 0.15, 90% 0.042169408 0.3436638
#> 0.2, 95% 0.025210726 0.5560955
#> 0.1, 95% 0.012348527 0.3169827
#> 0.3, 95% 0.066739511 0.6524529
#> 0.15, 95% 0.032070937 0.3789268
#> 0.2, 99% 0.010850509 0.6482012
#> 0.1, 99% 0.005295149 0.3871253
#> 0.3, 99% 0.037007221 0.7351140
#> 0.15, 99% 0.017642638 0.4494654